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Abstract

Duration dependent Markov-switching VAR (DDMS-VAR) models are time series
models with data generating process consisting in a mixture of two VAR processes.
The switching between the two VAR processes is governed by a two state Markov
chain with transition probabilities that depend on how long the chain has been in
a state. In the present paper we analyze the second order properties of such models
and propose a Markov chain Monte Carlo algorithm to carry out Bayesian inference
on the model’s unknowns. Furthermore, a freeware software written by the author
for the analysis of time series by means of DDMS-VAR models is illustrated. The
methodology and the software are applied to the analysis of the U.S. business cycle.
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1 Introduction and motivation

Since the path-breaking paper of Hamilton (1989), many applications of the
Markov switching autoregressive model (MS-AR) to business cycle analysis
have demonstrated its potential, particularly in dating the cycle in an “ob-
jective” way. The basic MS-AR model has, nevertheless, some limitations: (i)
it is univariate, (ii) the probabilities of transition from one state to the other
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(or to the other ones) are constant over time, iii) it is not capable of generat-
ing spectra with peaks in the business cycle frequencies. Since business cycles
are fluctuations of the aggregate economic activity, involving many macro-
economic variables at the same time, point (i) is not a negligible weakness.
The multivariate generalization of the MS model was carried out by Krolzig
(1997), in his excellent monograph on the MS-VAR model.

As far as point (ii) is concerned, it is reasonable to believe that the probability
of exiting a contraction is not the same at the very beginning of this phase as
after several months. Some authors, such as Diebold and Rudebusch (1990),
Diebold et al. (1993) and Watson (1994) have found evidence of duration de-
pendence in the U.S. business cycles, and therefore, as Diebold et al. (1993)
point out, the standard MS model results, in this framework, miss-specified.
In order to face this limitation, Durland and McCurdy (1994) introduced the
univariate duration-dependent Markov switching autoregression, designing an
alternative filter for the unobservable state variable. In the present article
the duration-dependent switching model is generalized in a multivariate man-
ner, and it is shown how standard tools related to the MS-AR model, such
as Hamilton’s filter and Kim’s smoother (Kim, 1994) can be used to model
duration dependence. Indeed, the filter proposed by Durland and McCurdy
(1994) may be shown to be equivalent to Hamilton’s filter calculated for a
more general Markov chain. While Durland and McCurdy (1994) carry out
their inference on the model by exploiting maximum likelihood estimation, we
relay on Bayesian inference using Markov chain Monte Carlo (MCMC) tech-
niques. The advantages of this technique are at least threefold. It does not
relay on asymptotics 2 , and in latent variable models, where the unknowns
are many, asymptopia may be far away. Inference on the latent variables is
not conditional on the estimated parameters (like in MLE). Furthermore, since
inference on MS models is notoriously rather sensitive to the presence of out-
liers, the possibility of using prior distributions on the parameters may limit
their damages, making the estimates more robust.

As far as point iii) is concerned, the analysis of the second order proper-
ties of DDMS-VAR models carried out in this paper demonstrates that these
processes may generate spectra with peaks in business cycle frequencies, sim-
ilar to the typical spectral shapes of many (detrended) economic variables.

The work is organized as follows: the duration-dependent Markov switching
VAR model (DDMS-VAR) is defined in section 2, its second order proper-
ties are derived in section 3, while the MCMC-based Bayesian inference is

2 Actually MCMC techniques do relay on asymptotic results, but the size of the
sample is under control of the researcher and some diagnostics on convergence are
available. Here it is meant that the reliability of the inference does not depend on
the sample size of the real-world data.
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explained in section 4; section 5 briefly illustrates the features of the software
DDMSVAR for Ox, written by the author for modelling with DDMS-VAR
models, and an application of the model and of the software to the U.S. busi-
ness cycle is carried out in section 6.

2 The model

The duration-dependent MS-VAR model 3 is defined by

yt = µ0 + µ1St + A1(yt−1 − µ0 − µ1St−1) + . . .

+Ap(yt−p − µ0 − µ1St−p) + εt (1)

where yt is a vector of observable variables, St is two state {0, 1} Markov
chain with time varying transition probabilities, A1, . . . ,Ap are coefficient
matrices of a stable VAR process, and εt is a gaussian (vector) white noise
with covariance matrix Σ.

In order to allow for duration dependence, the pair (St, Dt) is considered,
where Dt is the duration variable defined by

Dt =


1 if St 6= St−1

Dt−1 + 1 if St = St−1 and Dt−1 < τ

Dt−1 if St = St−1 and Dt−1 = τ

. (2)

It easy to see that (St, Dt) is also a Markov chain, since conditionally on
(St−1, Dt−1), (St, Dt) is independent of (St−k, Dt−k) with k = 2, 3, . . .. An
example of a possible sample path of (St, Dt) is shown in table 1. The value τ

Table 1
A possible realization of the process (St, Dt).

t 1 2 3 4 5 6 7 8 9 10 11 12

St 1 1 1 1 0 0 0 1 0 0 0 0

Dt 3 4 5 6 1 2 3 1 1 2 3 4

is the maximum that the duration variable Dt can reach and must be fixed a
priori so that the Markov chain (St, Dt) be defined on the finite state space

{(0, 1), (1, 1), (0, 2), (1, 2), . . . , (0, τ), (1, τ)}. (3)

3 Using Krolzig’s terminology, we are defining a duration dependent MSM(2)-VAR,
that is, Markov-Switching in Mean VAR with two states.
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When Dt = τ , only four events are given non-zero probabilities:

(St = i, Dt = τ)|(St−1 = i, Dt−1 = τ) i = 0, 1

(St = i, Dt = 1)|(St−1 = j, Dt−1 = τ) i 6= j, i, j = 0, 1.

with the following interpretation: when the economy has been in state i at
least τ times, the additional periods in which the state remains i influence no
more the probabilities of transition. Thus, the transition matrix P has the
form 4

P=



0 p0|1(1) 0 p0|1(2) . . . 0 p0|1(τ − 1) 0 p0|1(τ)

p1|0(1) 0 p1|0(2) 0 . . . p1|0(τ − 1) 0 p1|0(τ) 0

p0|0(1) 0 0 0 . . . 0 0 0 0

0 p1|1(1) 0 0 . . . 0 0 0 0

0 0 p0|0(2) 0 . . . 0 0 0 0

0 0 0 p1|1(2) . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . p0|0(τ − 1) 0 p0|0(τ) 0

0 0 0 0 . . . 0 p1|1(τ − 1) 0 p1|1(τ)


where pi|j(d) = Pr(St = i|St−1 = j, Dt−1 = d).

As pointed out by Hamilton (1994, section 22.4), it is always possible to write
the likelihood function of yt, depending only on the state variable at time
t, even though in the model a p-order autoregression is present; this can be
done using the extended state variable S∗

t = (Dt, St, St−1, . . . , St−p), which
comprehends all the possible combinations of the states of the economy in the
last p periods. In Table 2 the state space of non-negligible states 5 S∗

t , with
p = 4 and τ = 5, is shown. If τ ≥ p the number of non-negligible states is given
by u = 2(2p + τ − p− 1). The transition matrix P ∗ of the Markov chain S∗

t is
a rather sparse (u× u) matrix, having a maximum number 2τ of independent
non-zero elements.

4 The transition matrix is designed so that the elements of each column sum to one.
Our transition matrix is the transpose of the usual transition matrix in Markov chain
literature.
5 “Negligible states” stands here for ‘states always associated with zero probability’.
For example the state (Dt = 5, St = 1, St−1 = 0, St−2 = s2, St−3 = s3, St−4 = s4),
where s2, s3 and s4 can be either 0 or 1, is negligible as it is not possible for St to
have been 5 periods in the same state, if the state at time t− 1 is different from the
state at time t.
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Table 2
State space of S∗

t = (Dt, St, St−1, . . . , St−p) for p = 4, τ = 5.

Dt St St−1 St−2 St−3 St−4 Dt St St−1 St−2 St−3 St−4

1 1 0 1 0 0 0 17 2 0 0 1 0 0

2 1 0 1 0 0 1 18 2 0 0 1 0 1

3 1 0 1 0 1 0 19 2 0 0 1 1 0

4 1 0 1 0 1 1 20 2 0 0 1 1 1

5 1 0 1 1 0 0 21 2 1 1 0 0 0

6 1 0 1 1 0 1 22 2 1 1 0 0 1

7 1 0 1 1 1 0 23 2 1 1 0 1 0

8 1 0 1 1 1 1 24 2 1 1 0 1 1

9 1 1 0 0 0 0 25 3 0 0 0 1 0

10 1 1 0 0 0 1 26 3 0 0 0 1 1

11 1 1 0 0 1 0 27 3 1 1 1 0 0

12 1 1 0 0 1 1 28 3 1 1 1 0 1

13 1 1 0 1 0 0 29 4 0 0 0 0 1

14 1 1 0 1 0 1 30 4 1 1 1 1 0

15 1 1 0 1 1 0 31 5 0 0 0 0 0

16 1 1 0 1 1 1 32 5 1 1 1 1 1

In order to reduce the number (2τ) of elements in P ∗ to be estimated, a more
parsimonious Probit specification is used. Consider the linear model

Zt = [β1 + β2Dt−1]St−1 + [β3 + β4Dt−1](1− St−1) + εt (4)

with εt ∼ N (0, 1), and Zt latent variable defined by

Pr(Zt ≥ 0|St−1, Dt−1) = Pr(St = 1|St−1, Dt−1) (5)

Pr(Zt < 0|St−1, Dt−1) = Pr(St = 0|St−1, Dt−1). (6)

It’s easy to show that

p1|1(d) = Pr(St = 1|St−1 = 1, Dt−1 = d) = (7)

= 1− Φ(−β1 − β2d)

p0|0(d) = Pr(St = 0|St−1 = 0, Dt−1 = d) = Φ(−β3 − β4d) (8)

where d = 1, . . . , τ , and Φ(.) is the standard normal cumulative distribution
function. Now four parameters completely define the transition matrix P ∗.
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3 Second order properties of the model

The second order properties of a non-linear, non-gaussian process are by no
means exhaustive in describing its behavior, nevertheless there are good rea-
sons for studying the cross- and auto-covariance structure and spectrum of
such time series models. From a practical point of view, practitioners usually
analyze the features of economic time series by means of sample second order
moments; furthermore important concepts like business cycle, seasonality, etc.
are (implicitly or explicitly) defined in the frequency domain.

For the purpose of this section, it is convenient to use the VAR representation
of a Markov chain (Hamilton, 1994, p.679). Let Xt be a Markov chain with
state space {1, 2, . . . , N} and transition matrix P . If we define the random
vector

ξt =



(1, 0, 0, . . . , 0, 0)′ for Xt = 1

(0, 1, 0, . . . , 0, 0)′ for Xt = 2
...

...

(0, 0, 0, . . . , 1, 0)′ for Xt = N − 1

(0, 0, 0, . . . , 0, 1)′ for Xt = N

it is straightforward to check that E[ξt+1|ξt, ξt−1, . . .] = E[ξt+1|ξt] = Pξt. This
last consideration let us represent the Markov chain as

ξt+1 = Pξt + vt+1, (9)

with vt martingale difference sequence with respect to the σ-algebra generated
by {Xt, Xt−1, . . .}. If we can observe a vector yt, which takes the value zi,
i = 1, 2, . . . , N when Xt is in its i-th state, yt has the representation

yt = Zξt

with Z = [z1, . . . ,zN ].

The following proposition that holds in this more general setting will be useful
in determining the properties of the DDMS-VAR model.

Proposition 1 Let {Xt} be an ergodic Markov chain with state space 1, 2, . . . , N ,
let P = {Pr(Xt+1 = i|Xt = j)} be its transition matrix and π the vector of
ergodic probabilities. Then

E[yt] = Zπ (10)

Cov[yt, yt−k] = Z[P kdiag(π)− ππ′]Z ′ (11)

PROOF. Using the VAR representation of the Markov chain the expectation
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of yt is just
µ = E[yt] = ZE[ξt] = Zπ.

For the cross-covariance function we have

E[(yt − µ)(yt−k − µ)′] = E[(Zξt −Zπ)(Zξt−k −Zπ)′]

= ZE[(ξt − π)(ξ′t−k − π′)]Z ′

= ZE[(ξtξ
′
t−k)− ππ′]Z ′

= Z[P kE(ξt−kξ
′
t−k)− ππ′]Z ′

= Z[P kdiag(π)− ππ′]Z ′

2

The DDMS-VAR model has the representation

yt = Zξt + wt (12)

where wt is a stable VAR(p) process. The Markov chain driving ξt is here
(St, Dt) defined in the previous section and the matrix Z has the form

Z = 1′τ ⊗
[
µ0 |µ0 + µ1

]
(13)

with 1τ vector of ones of dimension τ . The matrix Z associates the mean
vector µ0 to the states for which St = 0 (odd states in Table 2) and µ0 + µ1

to the sates for which St = 1 (even states in Table 2).

Since ξt and wt are independent processes, the cross-covariance function of
yt is just the sum of the cross-covariance functions of ξt and of wt. Since the
latter is well known, we concentrate on the former and suppose that wt in
(12) is identically zero. Thus, in the following we assume

yt = Zξt.

The correlation structure of yt is given by the following proposition.

Proposition 2 (Cross-correlation function of a DDMS process) Un-
der the hypotheses of proposition 1, the correlation of any element of yt with
any element of yt−k, with Z as in (13), is given by

Corr(yi,t, yj,t) =
ζ ′

[
P kdiag(π)− ππ′

]
ζ

ζ ′
[
diag(π)− ππ′

]
ζ

∀i, j = 1, 2, . . . , K (14)

where ζ is a 2τ -vector of one of the two following forms

ζ = (1, 0, 1, 0, . . . 1, 0)′ or ζ = (0, 1, 0, 1, . . . 0, 1)′.
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Thus, all the auto-correlation and cross-correlation functions are equal and
independent of the choice of (µi,0, µi,1), i = 1, . . . , K.

PROOF. Since correlations are invariant with respect to translations of the
random variables, let’s consider the variables

ỹi,t = yi,t − µi,0 = (µi,0, µi,0 + µi,1, . . . , µi,0, µi,0 + µi,1)ξt − µi,0 = µi,1ζ
′ξt

with ζ ′ = (0, 1, 0, 1, . . . 0, 1). Using proposition 1, we have

Corr(ỹi,t, ỹj,t−k) =
µi,1µj,1ζ

′
[
P kdiag(π)− ππ′

]
ζ√

µ2
i,1ζ

′
[
diag(π)− ππ′

]
ζ · µ2

j,1ζ
′
[
diag(π)− ππ′

]
ζ

=
ζ ′

[
P kdiag(π)− ππ′

]
ζ

ζ ′
[
diag(π)− ππ′

]
ζ

.

The proof still holds if we take ỹi,t = yi,t − µi,0 − µi,1 = −µi,1ζ
′ξt with ζ ′ =

(1, 0, 1, 0 . . . 1, 0). 2

Since the autocorrelation function of the DDMS process is a complicated func-
tion of the elements of P , which in the Probit specification are functions of
the parameters βi, i = {1, 2, 3, 4}, we will rely on numerical computations to
study the behavior of the relative spectral density 6 .

Figure 1 shows the spectra of some symmetric DDMS models. The effect of
β1 (= −β3) on the spectrum may be seen in the first panel of the figure, while
the consequences of changing β2 (= −β4) are evident in the second panel. It
is interesting to notice that the DDMS model is capable of a wide range of
cyclical behaviors.

Even more interesting is the behavior of asymmetric DDMS’s. As figure 2
illustrates, asymmetric DDMS’s can have multi-modal spectra. This feature
seems particularly useful, since (detrended) economic time series having es-
timated spectra with most of the power concentrated around frequency zero
and a local maximum at business cycle frequencies are not rare 7 .

6 The existence of the spectral density is guaranteed by the geometric convergence
of the Markov chain.
7 This feature may be clearly seen, for example, in the spectrum (here not reported)
of the U.S. employment data used later in this paper.
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Fig. 1. Spectra of symmetrical DDMS: β1 = −β3 and β2 = −β4.
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Fig. 2. Spectra of asymmetrical DDMS.

4 Bayesian inference on the model’s unknowns

In this section it is shown how to carry out Bayesian inference on the model’s
unknowns

θ = (µ, A,Σ, β, {(St, Dt)}T
t=1),

where µ = (µ′
0, µ

′
1)

′ and A = (A1, . . . ,Ap), using MCMC methods.
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4.1 Priors

In order to exploit conditional conjugacy, we use the prior joint distribution 8

p(µ, A,Σ, β, (S0, D0)) = p(µ)p(A)p(Σ)p(β)p(S0, D0),

where

µ∼N (m0, M0), (15)

vec(A)∼N (a0, A0), (16)

p(Σ)∝ |Σ|−
1
2
(rank(Σ)+1), (17)

β∼N (b0, B0), (18)

and p(S0, D0) is a probability function that assigns a prior probability to
every element of the state-space of (S0, D0). Alternatively it is possible to let
p(S0, D0) be the ergodic probability function of the Markov chain {(St, Dt)}.

4.2 Gibbs sampling in short

Let θi, i = 1, . . . , I, be a partition of the set θ containing all the unknowns
of the model, and θ−i represent the set θ without the elements in θi. In order
to implement a Gibbs sampler to sample from the joint posterior distribution
of all the unknowns of the model, it is sufficient to find the full conditional
posterior distribution p(θi|θ−i, Y ), with Y = (y1, . . . ,yT ) and i = 1, . . . , I. A
Gibbs sampler step is the generation of a random variate from p(θi|θ−i, Y ),
i = 1, . . . , I, where the elements of θ−i are substituted with the most recent
sampled values of the relative variates. Since, under mild regularity conditions,
the Markov chain defined for θ(i), where θ(i) is the value of θ generated at the
ith iteration of the Gibbs sampler, converges to its stationary distribution, and
this stationary distribution is the “true” posterior distribution p(θ|Y ), it is
sufficient to fix an initial burn-in period of M iterations, such that the Markov
chain may virtually “forget” the arbitrary starting values θ(0), to sample from
(an approximation of) the joint posterior distribution. The values obtained
for each element of θ are samples from the marginal posterior distribution of
each parameters.

8 p(.) denotes a generic density or probability function.
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4.3 Gibbs sampling steps

Step 1. Generation of {S∗
t }T

t=1

We use an implementation of the multi-move Gibbs sampler originally pro-
posed by Carter and Kohn (1994) and Fruwirth-Schnatter (1994), which, sup-
pressing the conditioning on the other parameters from the notation, exploits
the identity

p(S∗
1 , . . . , S

∗
T |YT ) = p(S∗

T |YT )
T−1∏
t=1

p(S∗
t |S∗

t+1, Yt), (19)

with Yt = (y1, . . . ,yt).

Let ξ̂t|r be the vector containing the probabilities of S∗
t being in each state

(the first element is the probability of being in state 1, the second element
is the probability of being in state 2, and so on) given Yr and the model’s
parameters. Let ηt be the vector containing the likelihood of each state given
Yt and the model’s parameters, whose generic element is

(2π)−n/2|Σ|−1/2 exp
{
−1

2
(yt − ŷt)

′Σ−1(yt − ŷt)
}

,

where

ŷt = µ0 + µ1St + A1(yt−1 − µ0 − µ1St−1) + . . . + Ap(yt−p − µ0 − µ1St−p)

changes value according to the state of S∗
t .

The filtered probabilities of the states can be calculated using Hamilton’s filter

ξ̂t|t =
ξ̂t|t−1 � ηt

ξ̂′t|t−1ηt

ξ̂t+1|t = P ∗ξ̂t|t

with the symbol � indicating elementwise multiplication. The filter is com-
pleted with the prior probabilities vector ξ̂1|0, that, as already remarked, can
be set equal to the vector of ergodic probabilities of the Markov chain {S∗

t }.

In order to sample from the distribution of {S∗
t }T

1 given the full information
set YT , we exploit the result

11



Pr(S∗
t = j|S∗

t+1 = i, Yt) =
Pr(S∗

t+1 = i|S∗
t = j) Pr(S∗

t = j|Yt)∑m
j=1 Pr(S∗

t+1 = i|S∗
t = j) Pr(S∗

t = j|Yt)

=
pi|j ξ̂

(j)
t|t∑m

j=1 pi|j ξ̂
(j)
t|t

,

where pi|j is the transition probability of moving to state i from state j (ele-

ment (i, j) of the transition matrix P ∗) and ξ
(j)
t|t is the j-th element of vector

ξt|t. In matrix notation the same can be written as

ξ̂t|(S∗
t+1=i,YT ) =

pi. � ξ̂t|t

p′
i. ξ̂t|t

(20)

where p′
i. denotes the i-th row of the transition matrix P ∗.

Now all the probability functions in equation (19) have been given a form,
and the states can be generated starting from the filtered probability ξ̂T |T
and proceeding backward (T − 1, . . . , 1), using equation (20) where i is to be
substituted with the last generated value s∗t+1.

Once a set of sampled {S∗
t }T

t=1 has been generated, it is automatically available
a sample for {St}T

t=1 and {Dt}T
t=1.

The advantage of using the described multi-move Gibbs sampler, compared
to the single move Gibbs sampler that can be implemented as in Carlin et al.
(1992), or using the software BUGS 9 , is that the whole vector of states is
sampled at once, improving significantly the speed of convergence of the Gibbs
samper’s chain to its ergodic distribution. Kim and Nelson (1999, section 10.3),
in their outstanding monograph on state-space models with regime switching,
use a single-move Gibbs sampler (12000 sample points) to achieve (almost)
the same goal as in this paper, but the slow convergence properties of the
single-move sampler do not give evidence in favour of the reliability of their
estimates.

Step 2. Generation of (A,Σ)

Conditionally on {St}T
t=1 and µ equation (1) is just a multivariate normal

(auto-)regression model for the variable y∗
t = yt − µ0 − µ1St, whose para-

meters, given the discussed prior distribution, have the following posterior

9 http://www.mrc-bsu.cam.ac.uk/bugs/
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distributions, known in literature. Let X be the matrix, whose tth column is

x.t =



y∗
t

y∗
t−1

...

y∗
t−p


,

for t = 1, . . . , T , and let Y ∗ = (y∗
1, . . . ,y

∗
T ).

The posterior for (vec(A),Σ) is, suppressing the conditioning on the other
parameters, the normal–inverse Wishart distribution

p(vec(A),Σ|Y , X) = p(vec(A)|Σ, Y , X)p(Σ|Y , X)

p(Σ|Y , X) density of a IWk(V , n−m)

p(vec(A)|Σ, Y , X) density of a N (a1, A1),

with

V = Y ∗Y ∗′ − Y ∗X ′(XX ′)−1XY ∗′

A1 = (A−1
0 + XX ′Σ−1)−1

a1 = A1[A
−1
0 a0 + (X ⊗Σ−1)vec(Y )].

Step 3. Generation of µ

Conditionally on A and Σ, by multiplying both sides of equation (2) times

A(L) = (I −A1L− . . .−ApL
p),

where L is the lag operator, we obtain

A(L)yt = µ0A(1) + µ1A(L)St + εt,

which is a multivariate normal linear regression model with known variance
Σ, and can be treated as shown in step 2., with respect to the specified prior
for µ.

Step 4. Generation of β

Conditionally on {S∗
t }T

t=1, consider the probit model described in section 2.
Albert and Chib (1993) have proposed a method based on a data augmentation
algorithm to draw from the posterior of the parameters of a probit model.
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Given the parameter vector β of last Gibbs sampler iteration, generate the
latent variables {S•

t } from the respective truncated normal densities

Zt|(St = 0, xt, β)∼ N (x′
tβ, 1)I(−∞,0)

Zt|(St = 1, xt, β)∼ N (x′
tβ, 1)I[0,∞)

with

β = (β1, β2, β3, β4)
′

xt = (St−1, Dt−1, (1− St−1), (1− St−1)Dt−1)
′ (21)

and I{.} indicator function used to denote truncation.

With the generated Zt’s the Probit regression equation (4) becomes, again, a
normal linear model with known variance.

The former Gibbs sampler steps were numbered from 1 to 4, but any ordering
of the steps would eventually bring to the same ergodic distribution.

5 The software

DDMSVAR for Ox 10 is a software for time series modeling with DDMS-
VAR processes that can be used in three different ways: (i) as a menu driven
package 11 , (ii) as an Ox object class, (iii) as a software library for Ox. The
DDMSVAR software is freely available 12 at the author’s internet site 13 . In
this section I give a brief description of the software and in next section I
illustrate its use with a real-world application.

5.1 OxPack version

The easiest way to use DDMSVAR is adding the package to OxPack giving
DDMSVAR as class name. The following steps must be followed to load the

10 Ox (Doornik, 2001) is an object-oriented matrix programming language freely
available for the academic community in its console version.
11 If run with the commercial version of Ox (OxProfessional).
12 The software is freely available and usable (at your own risk): the only condition
is that the present article should be cited in any work in which the DDMSVAR
software is used.
13 www.statistica.unimib.it/utenti/p matteo/
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data, specify the model and estimate it.

Formulate

Open a database, choose the time series to be modelled and give them the Y
variable status. If you wish to specify an initial series of state variables, this
series has to be included in the database and, once selected in the model vari-
ables’ list, give it the State variable init status; otherwise DDMSVAR assigns
the state variable’s initial values automatically.

Model settings

Chose the order of the VAR model (p), the maximal duration (tau), which
must be at least 14 2, and write a comma separated list of percentiles of the
marginal posterior distributions, that you want to read in the output (default
is 2.5,50,97.5).

Estimate/Options

At the moment only the illustrated Gibbs sampler is implemented. Choose
the data sample and press Options.... The options window is divided in three
areas.

iterations
Here you choose the number of iteration of the Gibbs sampler, and the number
of burn in iteration, that is, the amounts of start iterations that will not be
used for estimation, because too much influenced by the arbitrary starting
values. Of course the latter must be smaller than the former.

priors & initial values
If you want to specify prior means and variances of the parameters to be esti-
mated, do it in a .in7 or .xls database following these rules: prior means and
variances for the vectorization of the autoregressive matrix A = [A1, A2, . . . ,Ap]
must be in fields with names mean a and var a; prior means and variances for
the mean vectors µ0 and µ1 must be in fields with names mean mu0, var mu0,

14 If you wish to estimate a classical MS-VAR model, choose tau = 2 and use priors
for the parameters β2 and β4 that put an enormous mass of probability around 0.
This will prevent the duration variable from having influence in the probit regres-
sion. The maximal value for tau depends only on the power of your computer, but
have care that the dimensions of the transition matrix u× u don’t grow too much,
or the waiting time may become unbearable.
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mean mu1 and var mu1; the fields for the vector β are to be named mean beta
and var beta. The file name is to be specified with extension. If you don’t
specify the file, DDMSVAR uses priors that are vague for typical applications.

The file containing the initial values for the Gibbs sampler needs also to be
a database in .in7 or .xls format, with fields a for vec(A), mu0 for µ0, mu1
for µ1, sigma for vech(Σ) and beta for β. If no file is specified, DDMSVAR
assigns initial values automatically.

saving options
In order to save the Gibbs sample generated by DDMSVAR, specify a file
name (you don’t need to write the extension, at the moment the only format
available is .in7) and check Save also state series if the specified file should
contain also the samples of the state variables. Check Probabilities of state 0
in filename.ext to save the smoothed probabilities {Pr(St = 0|YT )}T

t=1 in the
database from which the time series are taken.

Program’s Output

Since Gibbs sampling may take a long time, after five iterations the program
prints an estimate of the waiting time. The user is informed of the progress of
the process every 100 iterations.

At the end of the iteration process, the estimated means, standard deviations
(in the output named standard errors), percentiles of the marginal posterior
distributions are given.

The output consists also of a number of graphs:

(1) probabilities of St being in state 0 and 1,
(2) mean and percentiles of the transition probabilities distributions with

respect to the duration,
(3) autocorrelation function of every sampled parameter (the faster it dies

out, the higher the speed of the Gibbs sampler in exploring the posterior
distribution’s support, and the smaller the number of iteration needed to
achieve the same estimate’s precision),

(4) kernel density estimates of the marginal posterior distributions,
(5) Gibbs sample graphs (to check if the burn in period is long enough to

ensure that the initial values have been “forgot”),
(6) running means, to visually check the convergence of the Gibbs sample

means.
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5.2 The DDMSVAR() object class

The second simplest way to use the software is creating an instance of the
object DDMSVAR and using its member functions. The best way to illustrate
the most relevant member functions of the class DDMSVAR is showing a
sample program and commenting it.

#include "DDMSVAR.ox"

main() {

decl dd = new DDMSVAR();

dd->LoadIn7("USA4.in7");

dd->Select(Y_VAR, {"DLIP", 0, 0, "DLEMP", 0, 0,

"DLTRADE", 0, 0, "DLINCOME",0 ,0});

dd->Select(S_VAR,{"NBER", 0, 0});

dd->SetSelSample(1960, 1, 2001, 8);

dd->SetVAROrder(0);

dd->SetMaxDuration(60);

dd->SetIteration(21000);

dd->SetBurnIn(1000);

dd->SetPosteriorPercentiles(<0.05,50,99.5>);

dd->SetPriorFileName("prior.in7");

dd->SetInitFileName("init.in7");

dd->SetSampleFileName("prova.in7",TRUE);

dd->Estimate();

dd->StatesGraph("states.eps");

dd->DurationGraph("duration.eps");

dd->Correlograms("acf.eps", 100);

dd->Densities("density.eps");

dd->SampleGraphs("sample.eps");

dd->RunningMeans("means.eps");

}

dd is declared as instance of the object DDMSVAR. The first four member
functions are an inheritance of the class Database and will not be commented
here 15 . Notice only that the variable selected in the S VAR group must contain
the initial values for the state variable time series. Nevertheless, if no series is
selected as S VAR, DDMSVAR calculates initial values for the state variables
automatically.

15 See Doornik (2001).
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SetVAROrder(const iP) sets the order of the VAR model to the integer value
iP.

SetMaxDuration(const iTau) sets the maximal duration to the integer value
iTau.

SetIteration(const iIter) sets the number of Gibbs sampling iterations
to the integer value iIter.

SetBurnIn(const iBurn) sets the number of burn in iterations to the integer
value iBurn.

SetPosteriorPercentiles(const vPerc) sets the percentiles of the poste-
rior distributions that have to be printed in the output. vPerc is a row vector
containing the percentiles (in %).

SetPriorFileName(const sFileName),
SetInitFileName(const sFileName) are optional; they are used to specify
respectively the file containing the prior means and variances of the parame-
ters and the file with the initial values for the Gibbs sampler (see the previous
subsection for the format that the two files need to have). If they are not used,
priors are vague and initial values are automatically calculated.

SetSampleFileName(const sFileName, const bSaveS) is optional; if used
it sets the file name for saving the Gibbs sample and if bSaveS is FALSE

the state variables are not saved, otherwise they are saved in the same file
sFileName. sFileName does not need the extension, since the only available
format is .in7.

Estimate() carries out the iteration process and generates the textual output
(if run within GiveWin-OxRun it does also the graphs). After 5 iteration the
user is informed of the expected waiting time and every 100 iterations also
about the progress of the Gibbs sampler.

StatesGraph(const sFileName),
DurationGraph(const sFileName),
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Correlograms(const sFileName, const iMaxLag),
Densities(const sFileName),
SampleGraphs(const sFileName),
RunningMeans(const sFileName) are optional and used to save the graphs
described in the last subsection. sFileName is a string containing the file name
with extension (.emf, .wmf, .gwg, .eps, .ps) and iMaxLag is the maximum lag
for which the autocorrelation function should be calculated.

5.3 DDMSVAR software library

The last and most complicated (but also flexible) way to use the software is
as library of functions. The DDMS-VAR library consists in 25 functions, but
the user need to know only the following 10. Throughout the function list, it
is used the notation below.

p scalar order of vector autoregression (VAR(p))
tau scalar maximal duration (τ)
k scalar number of time series in the model
T scalar number of observations of the k time series
u scalar dimension of the state space of {S∗

t }
(u = 2(2p + τ − p− 1))

Y (k × T ) matrix of observation vectors (YT )
s (T × 1) vector of current state variable (St)
mu0 (k × 1) vector of means when the state is 0 (µ0)
mu1 (k × 1) vector of mean-increments when the state is 1 (µ1)
A (k × pk) VAR matrices side by side ([A1, . . . ,Ap])
Sig (k × k) covariance matrix of VAR error (Σ)
SS (u× p+2) state space of the complete Markov chain {S∗} (tab. 2)
pd (tau× 4) matrix of the probabilities [p00(d), p01(d), p10(d), p11(d)]
P (u× u) transition matrix relative to SS (P ∗)

xi flt (u× T−p) filtered probabilities ([ξ̂t|t])
eta (u× T−p) matrix of likelihoods ([ηt])

ddss(p,tau)

Returns the state space SS (see table 2).

A sampler(Y,s,mu0,mu1,p,a0,pA0)

Carry out step 2. of the Gibbs sampler, returning a sample point from the
posterior of vec(A) with a0 and pA0 being respectively the prior mean vector
and the prior precision matrix (inverse of covariance matrix) of vec(A).
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mu sampler(Y,s,p,A,Sig,m0,pM0)

Carry out step 3. of the Gibbs sampler, returning a sample point from the
posterior of [µ′

0, µ
′
1]
′ with m0 and pM0 being respectively the prior mean vector

and the prior precision matrix (inverse of covariance matrix) of [µ′
0, µ

′
1]
′.

probitdur(beta,tau)

Returns the matrix pd containing the transition probabilities for every dura-
tion d = 1, 2, . . . , τ .

pd =



p0|0(1) p0|1(1) p1|0(1) p1|1(1)

p0|0(2) p0|1(2) p1|0(2) p1|1(2)
...

...
...

...

p0|0(τ) p0|1(τ) p1|0(τ) p1|1(τ)


.

ddtm(SS,pd)

Puts the transition probabilities pd into the transition matrix relative to the
chain with state space SS.

ergodic(P)

Returns the vector xi0 of ergodic probabilities of the chain with transition
matrix P.

msvarlik(Y,mu0,mu1,Sig,A,SS)

Returns eta, matrix of T − p columns of likelihood contributions for every
possible state in SS.

ham flt(xi0,P,eta)

Returns xi flt, matrix of T − p columns of filtered probabilities of being in
each state in SS.

state sampler(xi flt,P)

Carry out step 1. of the Gibbs sampler. It returns a sample time series of val-
ues drawn from the chain with state space SS, transition matrix P and filtered
probabilities xi flt.

new beta(s,X,lastbeta,diffuse,b,B0)

Carry out step 4. of the Gibbs sampler. It returns a new sample point from
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the posterior of the vector β, given the dependent variables in X, where the
generic row is given by (21). If diffuse6= 0, a diffuse prior is used.

The functions of this library may be used also to carry out maximum likelihood
estimation of the parameter of the DDMS-VAR model with minimum effort:
an example program is available from the author.

6 Duration dependence in the U.S. business cycle

The model and the software illustrated in the previous sections have been
applied to 100 times the difference of the logarithm of the four time series, on
which the NBER mostly relays to date the U.S. business cycle, dating from
January 1960 to August 2001: i) industrial production (IP), ii) total nonfarm-
employment (EMP), iii) total manufacturing and trade sales in million of
1996$ (TRADE), iv) personal income less transfer payments in billions of
1996$ (INCOME).

The model estimated on these data is a DDMS-VAR(1) with diagonal autore-
gressive matrix and τ = 60 (5 years). The choice of using the DDMS alone as
the only common dynamic factor is justified by the fact that the estimates of
the cospectral densities for each pair of time series have very similar behaviors.

The inference on the model unknowns is based on a Gibbs sample of 11000
points, the first 1000 of which were discarded. The autocorrelations and the
kernel density estimates for each parameter are available from the author at
request. All the correlations die out before the 100th lag, thus the choice of a
burn-in sample of 1000 points seems quite reasonable.

The results of an earlier experiment with τ = 120 (10yrs) and p = 0 has not
been reported: the results were quite similar to the ones reported below and
the conclusions the same.

Summaries of the marginal posterior distributions are shown in table 3, while
figure 3 compares the probability of the U.S. economy being in recession re-
sulting from the model with the official NBER dating: the signal “probability
of being in recession” extracted by the model here presented matches the of-
ficial dating rather well, and is less noisy than the signal extracted by Hamil-
ton (1989), based on the IP series only. The NBER dating seems to be best
matched if, every time the model’s probability of being in recession exceeds
0.5, the peak date is set equal the time the line crosses a low probability level
(say 0.3) from below and the trough date is set equal the time the probability
line crosses a high probability level (say 0.8) from above. NBER trough dates
seem to be matched more frequently by the model than the peaks.
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Figure 4 shows how the duration of a state (recession or expansion) influences
the transition probabilities: while the probability of moving from a recession
into an expansion seems to be influenced by the duration of the recession, the
probability of falling into a recession appears to be independent of the length
of the expansion.

1960 1965 1970 1975 1980 1985 1990 1995 2000

0.5

1.0

Fig. 3. (Smoothed) probability of recession (line) and NBER dating (gray shade)
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Fig. 4. Mean (solid), median (dash) and 95% credible interval (dots) of the posterior
distribution of the probability of moving a) from a recession into an expansion after d
months of recession b) from an expansion to a recession after d months of expansion
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Table 3
Description of the prior and posterior distributions of the model’s parameters.

Prior Posterior

Parameter mean var mean s.d. 2.5% 50% 97.5%

µ0 IP 0 4 -0.584 0.136 -0.873 -0.578 -0.335

EMP 0 4 -0.153 0.040 -0.237 -0.151 -0.082

TRADE 0 4 -0.407 0.109 -0.636 -0.401 -0.210

INCOME 0 4 -0.094 0.055 -0.205 -0.092 0.009

µ1 IP 0 4 1.027 0.139 0.772 1.022 1.313

EMP 0 4 0.400 0.037 0.333 0.398 0.478

TRADE 0 4 0.817 0.114 0.600 0.813 1.053

INCOME 0 4 0.446 0.058 0.334 0.446 0.561

A1 IP 0 1 0.078 0.040 0.002 0.077 0.159

EMP 0 1 0.088 0.054 -0.010 0.086 0.199

TRADE 0 1 0.000 0.001 -0.002 0.000 0.002

INCOME 0 1 -0.094 0.055 -0.205 -0.092 0.009

β Const0 1 5 2.137 0.371 1.466 2.118 2.925

Dur0 0 5 -0.005 0.010 -0.025 -0.005 0.013

Const1 -1 5 -1.441 0.437 -2.329 -1.435 -0.558

Dur1 0 5 0.034 0.047 -0.054 0.032 0.132

7 Conclusions

We have analyzed the second order properties of the class of DDMS-VAR
processes and proposed a Gibbs sampler and a free software for the Bayesian
estimation of the unknowns.

The second order properties of the model seem to be flexible and well fit the
empirical features and co-features of many (detrended) macroeconomic time
series.

Once applied to four time series rather important for the dating of the U.S.
business cycle, the model has proved to have a good capability of discerning
recessions and expansions, as the probabilities of recession tend to assume
extremely low or high values and, the resulting dating of the U.S. business
cycle is very close to the official one.
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As far as duration-dependence is concerned, my results are similar to those
of Diebold and Rudebusch (1990), Diebold et al. (1993), Sichel (1991) and
Durland and McCurdy (1994): U.S. recessions are duration dependent, while
expansions seem to be not duration dependent. This could be simply due to
the fact that governments are interested in exiting contractions, while the
opposite is not true, and the policies they put in practice in order to achieve
this goal seem effective.

The DDMSVAR software has demonstrated to work fine, even though it must
be recognized that it is far from being fully optimized. Future versions will be
more efficient.

The Gibbs sampling approach has many advantages but also a big disadvan-
tage: the former are that (i) it allows prior information to be exploited, (ii)
it avoids the computational problems pointed out by Hamilton (1994, p. 689)
that can arise with maximum likelihood estimation, (iii) it does not relay on
asymptotic inference (see note 2), (iv) the inference on the state variables is
not conditional on the set of estimated parameters. The big disadvantage is a
long computation time, and sometimes some numerical instability.

References

Albert J.H., Chib S., 1993. Bayesian analysis of binary and polychotomous
responce data. Journal of the American Statistical Association 88, 669–679.

Carlin B.P., Polson N.G., Stoffer D.S., 1992. A Monte Carlo approach to
nonnormal and nonlinear state-space modeling. Journal of the American
Statistical Association 87, 493–500.

Carter C.K., Kohn R., 1994. On Gibbs sampling for state space models.
Biometrika 81, 541–553.

Diebold F., Rudebusch G., (1990). A nonparametric investigation of duration
dependence in the American business cycle. Journal of Political Economy 98,
596–616.

Diebold F., Rudebusch G., Sichel D., 1993. Further evidence on business
cycle duration dependence. In: Stock J., Watson M. (Eds), Business Cycles,
Indicators and Forcasting. The University of Chicago Press: Chicago, 255–
280.

Doornik J.A., 2001. Ox. An object-oriented matrix programming language.
Timberlake Consultants Ltd: London.

Durland J., McCurdy T., 1994. Duration-dependent transitions in a Markov
model of U.S. GNP growth. Journal of Business and Economic Statistics 12,
279–288.

Fruwirth-Schnatter S., 1994. Data Augmentation and Dynamic Linear Models.
Journal of Time Series Analysis 15, 183–202.

24



Hamilton J.D., 1989. A new approach to the economic analysis of nonstation-
ary time series and the business cycle. Econometrica 57, 357–384.

Hamilton J.D. 1994. Time Series Analysis. Princeton University Press: Prince-
ton.

Kim C.J., 1994. Dynamic Linear Models with Markov-Switching. Journal of
Econometrics 60, 1–22.

Kim C.J., Nelson C.R. 1999. State-space models with regime switching: clas-
sical and Gibbs-sampling approches with applications. The MIT Press:
Cambridge.

Krolzig H.M., 1997. Markov-Switching Vector Autoregressions. Modelling,
Statistical Inference and Application to Business Cycle Analysis. Springer-
Verlag: Berlin.

Sichel D.E., 1991. Business cycle duration dependence: a parametric approach.
Review of Economics and Statistics 73, 254–256.

Watson J., 1994. Business cycle durations and postwar stabilization of the
U.S. economy. American Economic Review 84, 24–46.

25


